Ключевые ферменты, участвующие в синтезе ДНК
Страница 1

Информация » Репликация, сохранение и модификация генома » Ключевые ферменты, участвующие в синтезе ДНК

Многие известные теперь детали процесса репликации ДНК удалось установить благодаря исследованию поведения и активности ферментов, обеспечивающих работу аппарата репликации. Наиболее полно изучен механизм репликации бактериальной ДНК, особенно ДНК Е. coli и бактериофагов, которые в ней размножаются. Довольно хорошо известны и ферменты репликации дрожжей, Drosophila, клеток и вирусов млекопитающих. Здесь мы обсудим механизм действия ДНК-полимераз и ДНК-лигаз, поскольку при синтезе длинных цепей ДНК эти два фермента работают согласованно.

ДНК-полимеразы. ДНК-полимеразы присутствуют во всех прокариотических и эукариотических клетках. Более того, многие вирусы бактерий и животных индуцируют образование вирус-специфических ДНК-полимераз или белков, способствующих эффективному участию ДНК-полимераз клеток-хозяев в репликации вирусной ДНК. Некоторые прокариотические и эукариотические ДНК-полимеразы выделены в чистом виде, а их физические и ферментативные свойства охарактеризованы. И хотя эти свойства не совсем идентичны, механизм катализа для всех указанных ферментов в общих чертах одинаков.

Наиболее полно изучена ДНК-полимераза I E. coli. Она представляет собой одиночный полипсптид с мультифункциональными активностями. В качестве ДНК-полимеразы Pol I катализирует перенос 5'-дезоксинуклеотидильных единиц дезоксинуклеозид-5'-трифосфатов к 3'-ОН-группе в цепи ДНК или РНК, после чего происходит спаривание перенесенного основания с соответствующим основанием комплементарной цепи ДНК. Таким образом, для полимеризации ферменту необходимы праймер в качестве дезоксинуклеотидного акцептора и матрица, детерминирующая присоединение нужного нук-леотида. Помимо полимеризации нуклеотидов, Pol I катализирует две другие реакции, биологическая роль которых очень важна. В одной из них происходит гидролиз фосфодиэфирных связей в одной цепи ДНК или на неспаренном конце дуплексной ДНК, причем за один акт удаляется один нуклеотид, начиная с З'-конца цепи. Вторая реакция также состоит в отщеплении нуклеотидов, но гидролиз начинается с 5'-конца дуплексной ДНК в направлении к 3'-концу. Эти различные активности присущи разным сайтам полипептидной цепи Pol I. Если in vitro обработать Pol I трипсином, то полипептидная цепь расщепится на большой и малый фрагменты. Большой, С-концевой фрагмент сохраняет ДНК-полимеразную и 3'-5'-экзонуклеазную активности; малый, N-концевой фрагмент обладает только 5'-3'-экзонуклеазной активностью.

Pol I и присущие ей экзонуклеазные активности играют очень большую роль в репликации и репарации хромосомной ДНК E. coli.3'-5'-экзонуклеаз-ная активность обеспечивает контроль за присоединением каждого нуклеотида и удаление ошибочных нуклеотидов с растущего конца цепи. Если эта активность подавлена в результате каких-то мутаций в гене, кодирующем Pol I, то при репликации генома часто происходят мутации - замены оснований.

Способность ДНК-полимеразы удлинять 3'-ко-нец цепи, спаренной с матричной цепью, позволяет ей заполнять пробелы между сегментами отстающей цепи. Pol I удлиняет фрагменты Оказаки с 3'-концов и удаляет рибонуклеотиды, с которых начинаются 5'-концы соседних фрагментов, что является необходимой предпосылкой для формирования непрерывной отстающей цепи. Поскольку Pol I способна удлинять 3'-конец одной из цепей в месте разрыва в двухцепочечной ДНК и удалять нуклеотиды с 5'-конца того же разрыва. этот фермент играет ключевую роль в репарации поврежденной ДНК. Ник-трансляция широко используется in vitro для синтеза радиоактивно меченной ДНК.

У Е. coli имеются и две другие ДНК-полимеразы, но они присутствуют в клетке в меньших количествах. Pol II присоединяет нуклеотиды значительно менее эффективно, чем Pol I, и не обладает 5'-3'-эк-зонуклеазной активностью. Следовательно, Pol II может заполнять пробелы между фрагментами ДНК, спаренными с матричной цепью, но не способна отщеплять РНК-нуклеотиды от фрагментов Оказаки или осуществлять ник-трансляцию. Роль Pol II в репликации и сохранении хромосомной ДНК E. coli до настоящего момента неясна.

Pol III-холофермент - это ключевой фермент, ответственный за репликацию хромосомной ДНК E. coli. В каждой клетке содержится только 10-20 копий Pol III-холофермента, и тем не менее он является основным компонентом мультиферментного комплекса, инициирующего формирование репликативных вилок в точках начала репликации, участвующего в элонгации лидирующей цепи в вилке и удлиняющего РНК-праймеры с образованием фрагментов Оказаки. Но поскольку Pol III-xo-лофермент не обладает 5'-3'-экзонуклеазной активностью, для репликации отстающей цепи необходимо участие Pol I, чтобы произошло удлинение продукта, образовавшегося при участии Pol III, и удаление РНК-праймеров на 5'-конце фрагментов Оказаки.

Страницы: 1 2 3


Другие статьи:

Перфузия изолированных органов
Сущность этого метода заключается в том, что изучаемый орган (печень, почку или сердце) изолируют из организма животного и помещают в специальный термостатируемый прибор. Затем к перфузионной жидкости, которая обычно вводится в орган чере ...

Водно-болотные угодья междуречья Амура и Зеи
Рельеф местности холмистый, характеризуется сопками и падями. При этом пади заболочены или заняты кочковатыми вейнико-осоковыми лугами, с наличием ерниковых кустарников – берёза овальнолистная (Веtula ovalifolia), Медендорфа(B. middendorf ...

Приготовление лекарственных форм
Из лекарственных растений, как правило, готовят горячие настои, отвары, вытяжки, настойки и припарки. Настой. Для разового приготовления горячего настоя обычно берут 10 или 20 г (1-2 столовые ложки) измельченного сырья, помещают в эмали ...