Электрическое оружие и электролокаторы
Страница 2

Информация » Работа электрических органов рыб » Электрическое оружие и электролокаторы

Законы физики и условия среды обитания определяют пути эволюции электрических органов, и последние развиваются сходным образом, хотя и происходят у разных рыб из разных тканей. Например, у скатов клетки электрических органов возникли из мышечных клеток, потерявших возбудимость, фактически, от этих клеток осталась только синаптическая область; постепенная атрофия остальной части мышечной клетки хорошо прослежена при изучении развития рыбы из икринки. Медиатор, действующий на электрический орган, – тот же ацетилхолин, который возбуждает и мышечные клетки позвоночных, поэтому разряд органа можно вызвать не только раздражением подходящего к нему нерва, но и введением, ацетилхолина в идущую к нему артерию. У электрического угря орган тоже имеет мышечное происхождение, однако у некоторых электрических рыб электрические органы возникли не из мышечных, а из нервных клеток, а у африканского электрического сома – из клеток кожных желез. Это не должно удивлять читателя, который уже знает, что не только нервы и мышцы способны к электрическим реакциям.

Такие рыбы, как электрический скат или электрический угорь, затрачивают при разрядах электрического органа заметную энергию, В связи с этим они используют свои электрические органы сравнительно редко. У электрического угря есть еще дополнительные электрические органы, гораздо меньшей мощности, которые используются для ориентации и обнаружения добычи. У слабоэлектрических рыб, которые используют свои электрические органы только для ориентации, часто наблюдается совсем другой режим работы – непрерывные разряды. Например, у рыбы гимнарха электрические органы постоянно работали с частотой 300 Гц.

Важная проблема, которая стоит перед всеми электрическими рыбами, – проблема синхронизации, т.е. проблема вызова одновременного возбуждения всех клеток, образующих электрический орган. Она решается, прежде всего, с помощью ЭС. Нейроны разных уровней, управляющие электрическим органом, связаны между собой ЭС и поэтому разряжаются практически одновременно. У электрических рыб обнаружены рефлекторные цепи, которые ведут к возбуждению электрического органа; в этих цепях осуществляется последовательная передача сигналов между тремя типами нейронов, причем сигналы передаются только через ЭС. Однако одновременного возбуждения нейронов, действующих на клетки электрического органа, еще не достаточно для одновременного возбуждения самих этих клеток, так как сотни и тысячи клеток «столбиков» расположены на разных расстояниях от нейронов. Аксоны этих нейронов имеют разную скорость проведения: к более удаленным клеткам сигнал идет с большей скоростью.

Как поймать рыбу в мутной воде? А также про электроразговоры

Для существа, обладающего чувствительными электрорецепторами, обнаружить рыбу в мутной воде несложно; для этого достаточно зарегистрировать электрические поля, возникающие при работе ее сердца или дыхательных мышц. Так обнаруживают добычу акулы или скаты. Но рыбы, обладающие электрическими органами, оказались способными решить и более хитрую задачу: обнаружить в непрозрачной воде предметы, которые сами по себе не создают электрических полей. Как же электрические рыбы решают эту задачу?

Сначала думали, что эти рыбы обладают электролокаторами, такими же, как радиолокаторы для обнаружения самолетов. Предполагалось, что эти рыбы генерируют своими электрическими органами сигнал и принимают отраженную от посторонних предметов волну с помощью электрорецепторов. Однако простейшая прикидка показывает, что такой принцип работы невозможен для живых организмов. Рыба обнаруживает посторонние предметы на расстоянии в десятки сантиметров, а электромагнитные волны проходят такие расстояния за слишком короткие времена. Миллиардные доли секунды живые существа измерять не могут. Как же рыбы с помощью электрических органов обнаруживают в воде посторонние предметы?

Лиссман изучал эту способность рыб так. У рыбы вырабатывался условный рефлекс. В аквариум, в котором она содержалась, помещали два цилиндрика одинаковых размеров, обладающих таким же удельным сопротивлением, как вода аквариума, и пустых внутри. В цилиндрики помещались вещества с разным удельным сопротивлением. Рыбу обучали выбирать цилиндрик с более низким удельным сопротивлением. При правильном выборе она получала пищу, а при неправильном – удар палочкой. Через некоторое время рыба уверенно выбирала нужный цилиндрик, несмотря на то, что два цилиндрика все время меняли местами случайным образом. Если же в цилиндриках находились вещества, отличающиеся химическим составом, плотностью и др., но с одинаковым удельным сопротивлением, обучение было безуспешным. Итак, рыбы при обнаружении посторонних предметов могут использовать отличие их удельного сопротивления от сопротивления воды.

Мы уже говорили, что гимнарх все время генерирует электрические импульсы, так что вокруг его тела в воде текут токи. Если изобразить плотность тока с помощью густоты линий, то картина токов вокруг рыбы выглядит примерно так, как изображено на рис. 64. Если в воду внесено проводящее тело, то картина меняется, как на рис. 64, справа, если изолятор–как на рис. 64, слева. Искажение электрического поля меняет сигналы электрорецепторов рыбы.

Страницы: 1 2 3 4


Другие статьи:

Заключение.
Пластиды. Пластиды – особые органоиды растительных клеток, в которых осуществляется синтез различных веществ, и в первую очередь фотосинтез. В цитоплазме клеток высших растений имеется три основных типа пластид: 1) зеленые пластиды – х ...

Геометрия мицелл и критический параметр упаковки
Говоря о наиболее стабильной геометрии мицелл, следует принять во внимание три молекулярных параметра. Sb, оптимальная площадь поверхности, занимаемой молекулой на гидрофобной поверхности раздела. Она частично зависит от свойств раствора ...

IL-12 + p40
Интерлейкин-13 ...