Механистическая картина мира

Согласно Ньютону, весь мир состоит «из твердых, весомых, непроницаемых, подвижных частиц». Эти «первичные частицы абсолютно тверды: они неизмеримо более тверды, чем тела, которые из них состоят, настолько тверды, что они никогда не изнашиваются и не разбиваются вдребезги». Отличаются они друг от друга главным образом количественно, своими массами. Все богатство, все качественное многообразие мира - это результат различий в движении частиц. Внутренняя сущность частиц остается на втором плане.

Основанием для такой единой картины мира послужил всеобъемлющий характер открытых Ньютоном законов движения тел. Этим законам с удивительной точностью подчиняются как громадные небесные тела, так и мельчайшие песчинки, гонимые ветром. И даже ветер - движение не видимых глазом частиц воздуха - подчиняется тем же законам. На протяжении долгого времени ученые были уверены, что единственными фундаментальными законами природы являются законы механики Ньютона. Классическая механика Ньютона сыграла и играет до сих пор огромную роль в развитии естествознания. Она объясняет множество физических явлений и процессов в земных и внеземных условиях, составляет основу многих технических достижений. На ее фундаменте формировались естественно-научные методы исследований в различных отраслях естествознания. Вплоть до начала XX в. в науке господствовало механистическое мировоззрение: все явления природы можно объяснить движениями частиц и тел. В 1667г. Ньютон сформулировал три фундаментальных закона классической механики.

Первый закон Ньютона: всякая материальная точка (тело) сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не заставит ее изменить это состояние. Стремление тела сохранить состояние покоя или равномерного прямолинейного движения называется инертностью или инерцией. Поэтому первый закон Ньютона иногда называют законом инерции. Второй закон Ньютона: ускорение, приобретаемое материальной точкой (телом), пропорционально вызывающей его силе и обратно пропорционально массе материальной точки (тела). Ускорение характеризует быстроту изменения скорости движения тела. Масса - одна из основных характеристик материальных объектов, определяющая их инерционные (инертная масса) и гравитационные (тяжелая или гравитационная масса) свойства. Сила - это векторная величина, мера механического воздействия на тело со стороны других тел или полей, в результате которого тело приобретает ускорение или изменяет свою форму и размеры. Второй закон Ньютона справедлив только в инерциальных системах отсчета. Первый закон Ньютона можно получить из второго. Действительно, в случае равенства нулю равнодействующих сил (при отсутствии воздействия на тело со стороны других тел) ускорение также равно нулю. Однако первый закон Ньютона рассматривается как самостоятельный закон, а не как следствие второго закона, поскольку именно он утверждает существование инерциальных систем отсчета. Взаимодействие между материальными точками (телами) определяется третьим законом Ньютона: всякое действие материальных точек (тел) друг на друга носит характер взаимодействия; силы, с которыми действуют друг на друга материальные точки, всегда равны по модулю, противоположно направлены и действуют вдоль прямой, соединяющей эти точки, где F12 - сила, действующая на первую материальную точку со стороны второй; F21 - сила, действующая на вторую материальную точку со стороны первой. Эти силы приложены к разным материальным точкам (телам), всегда действуют парами и являются силами одной природы. Третий закон Ньютона позволяет осуществить переход от динамики отдельной материальной точки к динамике системы материальных точек, характеризующихся парным взаимодействием. Законы Ньютона позволяют решить многие задачи механики - от простых до сложных. Спектр таких задач значительно расширился после разработки Ньютоном и его последователями нового для того времени математического аппарата - дифференциального и интегрального исчисления, широко применяемого в настоящее время для решения различных задач естествознания и математики.


Другие статьи:

Химизм аэробной фазы дыхания. Заслуга Г. Кребса
Вторая фаза дыхания — аэробная — требует присутствия кислорода. В аэробную фазу вступает пировиноградная кислота. В присутствии достаточного количества О2 пируват полностью окисляется до СО2 и Н2О. Еще в 1910 году шведским химиком Т. Тун ...

Чем определяется конформация белка
Структуру белка можно рассматривать на разных уровнях организации - на уровне первичной, вторичной, третичной или четвертичной структуры. Первые три относятся к структурным характеристикам полипептидных цепей, четвертый отражает структуру ...

Водно-липидные смеси
Смеси липидов с водой отличаются выраженным полиморфизмом. Даже индивидуальные очищенные липиды в гидратированном состоянии могут находиться в нескольких структурных модификациях. Какая из структур преобладает, зависит от таких параметров ...