Нейроны-гибриды
Страница 2

А вот если взять сердце лягушки или даже млекопитающего и, перерезав все ведущие к нему нервы, поместв его в питательный раствор, оно будет ритмически сокращаться. На первый взгляд, это показывает, что нервнея система не участвует в генерации сердечного ритма у позвоночных. Но с другой стороны, в ткани самого сердца среди мышечных имеются и нервные клетки, и нет способа удалить все эти клетки из сердца. Поэтому вполне возможно, что именно эти нервные клетки и заставляют сердце биться, т. е. все происходит так же, как у краба. В конце прошлого века среди физиологов и был распространен этот «второй взгляд»: так называемая нейрогенная теория сердечного ритма.

Однако около ста лет тому назад английский физиолог Гаскелл подверг эту теорию серьезной критике и выдвинул ряд аргументов в пользу того, что к самопроизвольной ритмической активности способны сами мышечные клетки некоторых участков сердца. Свыше полувека шла плодотворная научная дискуссия, которая, в конце концов, привела к победе миогенной теории. Оказалось, что в сердце действительно есть два участка особой мышечной ткани, клетки которой обладают спонтанной активностью. Один участок находится в правом предсердии, другой — на границе предсердия и желудочка. Первый обладает более частым ритмом и определяет работу сердца в нормальных условиях, второй является запасным: если первый узел останавливается, то через некоторое время начинает работать второй участок и сердце начинает биться снова, хотя и в более редком ритме. Если выделить из того или другого участка отдельные мышечные клетки и поместить их в питательную среду, то эти клетки продолжают сокращаться в свойственном им ритме: синусные — чаще, атриовентрикулярные — реже.

Очень интересно, что даже после победы миогенной теории идея спонтанной активности длительное время была чужда многим биологам. Они говорили, что всякая реакция должна быть ответом на какое-то воздействие, подобно рефлексу. По их мнению, признать, что мышечные клетки могут сокращаться сами по себе,— все равно, что отказаться от принципа причинности. Сокращение сердечных клеток готовы были объяснить чем угодно, но только не их собственными свойствами. Наше поколение еще застало горячие дискуссии по этому поводу.

Как же ведет себя потенциал сердечных клеток-пейсмекеров? Сравним поведение МП гигантского аксона кальмара и клетки синусного узла. В аксоне кальмара уровень ПП является устойчивым: при небольших отклонениях МП от ПП в любую сторону — в сторону гиперполяризации или в сторону деполяризации — возникает калиевый ток, направленный так, что равновесие восстанавливается. После возбуждения МП также возвращается к ПП.

В отличие от потенциала гигантского аксона потенциал клетки синусного узла после возникновения ПД не удерживается на каком-либо равновесном уровне; он начинает опять сдвигаться в сторону деполяризации, пока не достигнет порогового уровня, после чего возникает новый ПД.

Эти непрерывные периодические изменения МП обусловлены набором ионных каналов и насосов, присущих клеткам синоатриального узла.

Редкий случай, когда «уравниловка» полезна

Итак, ритмические сокращения сердца вызываются не нервными клетками, а собственными клетками этой мышцы. Более точно, следовало бы сказать, что в процессе эволюции клетки сердца разделили свои функции: одни — клетки ведущих узлов сердца — «научились» подобно нейронам-пейсмекерам генерировать ритмические импульсы, другие — клетки проводящей системы — подобно аксонам проводить возбуждение, а третьи остались при своей старой «специальности»: они под действием этих импульсов сокращаются, выполняя главную работу сердца.

Резонно спросить, зачем же сердцу другие, «настоящие» нервные клетки — помните, мы сказали, что сердце невозможно отделить от них. Эти клетки выполняют либо рецепторные функции, либо участвуют в регуляции частоты и силы сердечных сокращений. Часть этих нервных клеток и получает сигналы извне.

Но кроме этой нервной регуляции в сердце есть еще важный механизм, обеспечивающий регулярность нормального ритма сокращений, так сказать, механизм стабилизации сердечного ритма. Дело в том, что, как показали эксперименты, каждая клетка синусного узла по отдельности работает не вполне ритмично: промежутки между возникающими в ней импульсами могут самопроизвольно меняться в 2—3 раза. Это связано с маленькими размерами клеток, из-за чего они чрезвычайно чувствительны ко всякого рода воздействиям. Даже в питательной среде, где искусственно поддерживаются весьма стабильные условия, в самой клетке могут возникать небольшие колебания мембранного потенциала. Если такое колебание попадает на стадию медленной деполяризации клеток синусного узла, когда потенциал приближается к пороговому значению очень медленно, то, как легко понять из рис. 57в, даже небольшие колебания потенциала могут значительно сократить или, наоборот, увеличить время между последовательными возбуждениями клеток, В условиях организма внешние условия, в принципе, не могут быть абсолютно стабильными, и там естественно ожидать еще больших колебаний периода. Как же получается, что сердце бьется ритмично? Может быть, среди сотен тысяч клеток-пейсмекеров синусного узла есть клетки с особенно устойчивым периодом? И вообще, какая из этих клеток задает ритм сердцу? Оказывается, никакая. И никаких особо устойчивых клеток в синусном узле нет. Устойчивый ритм возникает совсем иначе.

Страницы: 1 2 3 4


Другие статьи: