ДНК - это единственная макромолекула клетки, которая способна устранять повреждения, возникающие в ее структуре. Более того, в ней закодирована информация о механизмах самых разнообразных репарационных процессов. Комплементарное спаривание лежит в основе не только репликации ДНК, но и процесса восстановления исходной структуры ДНК при репарации повреждений, затрагивающих остов молекулы, модификаций того или иного основания или ошибочного спаривания при рекомбинации. Одновременное повреждение обеих цепей в одном месте и двухцепочечные разрывы часто оказываются летальными для ДНК, поскольку такие дефекты репарируются лишь в редких случаях.

Наиболее часто происходит разрыв гликозидных связей между пурином и дезоксирибозой N при повышении температуры. За сутки в клетке человека совершается от 5000 до 10000 актов депуринизации. Если не принимать никаких мер, то это приведет к нарушению репликации и экспрессии генов. Кроме того, остатки цитозина и аденина могут подвергаться спонтанному дезаминированию с образованием соответственно остатков урацила и гипоксантина; частота таких событий составляет примерно 100 на геном в сутки. Если подобные нарушения в ДНК не будут устранены до следующего раунда репликации, то они могут послужить источником мутаций.

Многие изменения в структуре ДНК происходят под действием химических веществ, присутствующих в окружающей среде. К таким веществам относятся алкилирующие агенты, которые модифицируют предпочтительно гуаниновые остатки; соединения, встраивающиеся между соседними парами оснований и приводящие к появлению вставок и делеций во время репликации; бифункциональные агенты, способные образовывать ковалентные сшивки между двумя цепями ДНК и блокировать их расхождение при репликации. Не менее разрушительными могут быть и физические воздействия. Поглощение тиминовым или цитозиновым основанием ультрафиолетового света может приводить к образованию циклобутановых димеров между соседними пиримидинами; под действием ионизирующей радиации, например космических лучей, могут образовываться высоко реакционноспособные свободные радикалы, оказывающие на ДНК самые разнообразные воздействия; при облучении рентгеновскими лучами в медицинских целях в ДНК могут возникать одно - и двухцепочечные разрывы, а также другие повреждения, характерные для воздействия на ДНК свободных радикалов.

Как же ДНК противостоит таким разрушительным воздействиям? Благодаря какому механизму восстанавливается нормальная структура нуклеотидов и их последовательность прежде, чем эффект воздействия закрепится и проявится в виде мутации?

Известны два основных типа репарационных процессов:

1) непосредственное исправление модификаций или неправильных спариваний, не требующее репликации для восстановления исходной структуры;

2) удаление нуклеотидов, окружающих ошибочно спаренные или измененные пары оснований, и ре-синтез этого участка путем репликации.


Другие статьи:

Береза повислая (BETULA PENDULA ROTH)
Береза повислая, или белая, — это украшение русских лесов. У нее длинные, свисающие вниз ветви, гладкий белый ствол, блестящие листья. Молодые побеги ее покрыть многочисленными смолистыми, шершавыми бородавками, за что ее называют еще бер ...

Способности
Способности - устойчивые психологические свойства людей, которыми они отличаются друг от друга и от которых зависят их достижения в различных видах деятельности. Способный человек умеет делать определенное дело, причем таким образом, что ...

Основные концепции этологии
Основы этологии, или науки о поведении животных, были заложены в XIX веке. После первых экспериментов Д. Сполдинга по изучению поведения животных, Ч. Уитмен, тщательно наблюдая за поведением животных разных видов, указал, что многие инсти ...