Кабельные свойства нервных и мышечных волокон

Информация » Нейроны как проводники электричества » Кабельные свойства нервных и мышечных волокон

Цилиндрическое нервное волокно состоит из тех же компонентов, что и подводный электрический кабель: из стержневого проводника и изоляционной оболочки, окруженной проводящей средой. Тем не менее, количественное отличие этих двух систем весьма велико. Стержень кабеля обычно сделан из меди или металла с очень высокой проводимостью, в то время как оболочка сделана из пластика или других материалов с очень высоким сопротивлением. Кроме того, оболочка обычно бывает довольно толстая и потому обладает низкой емкостью. Напряжение, приложенное к такому проводу, способно передаться на значительное расстояние благодаря тому, что сопротивление меди мало, как незначительны и потери через оболочку. Содержимое нервного волокна представляет собой раствор солей, по концентрации похожий на внеклеточную среду и, в отличие от меди, обладающий плохой проводимостью. Мембрана клетки, в свою очередь, не является хорошим изолятором и обладает высокой емкостью ввиду своей малой толщины. Напряжение, приложенное к нервному волокну, не распространяется на значительное расстояние по двум причинам:

1) проводимость содержимого волокна мала, следовательно, сопротивление току велико;

2) ток, протекающий вдоль цитоплазмы, рассеивается благодаря утечке сквозь мембрану, не обеспечивающую достаточной изоляции.

Анализ тока в кабеле был начат лордом Кельвином применительно к трансатлантической телефонной связи и усовершенствован Оливером Хевисайдом. В конце XX в. Хевисайд впервые учел значимость утечки тока через изоляционную оболочку, эквивалентную клеточной мембране, а также внес множество важных дополнений в кабельную теорию, в том числе определил понятие импеданса. Кабельная теория была впервые использована для нервных волокон Ходжкиным и Раштоном, которые экспериментально измерили распространение потенциала действия в аксоне омара с помощью внеклеточных электродов. Позднее для подобных измерений в целом ряде нервных и мышечных волокон использовались внутриклеточные электроды.

Основным правилом здесь является закон Ома: ток i, проходя через сопротивление г, создает напряжение ν = ir. Ниже мы рассмотрим также влияние мембранной емкости на величину и временной ход продольного распространения тока.


Другие статьи:

Универсальный эволюционизм - основа современной научной картины мира
Представления об универсальности процессов эволюции во Вселенной реализуются в современной науке в концепции универсального эволюционизма. Его принципы позволяют единообразно описать огромное разнообразие процессов, протекающих в неживой ...

Систематический обзор
Современные млекопитающие принадлежат к трем подклас­сам: первозвери, низшие звери, высшие звери. Подкласс первозвери, или клоачные ( Prototheria] У первозверей наряду с характерными для млекопитающих признаками (наружный покров волосян ...

Гены, вступающие в действие на более поздних стадиях развития и в процессе роста
Ясно, что мутации генов, непосредственно определяющих морфогенетические пути, в особенности тех генов, которые действуют на ранних стадиях, могут вызывать чрезвычайно резкие изменения развития. Однако существуют также гены, действующие на ...