Определение нуклеотидной последовательности (секвенирование) ДНК
Страница 1

Информация » Рекомбинантные(химерные) ДНК » Определение нуклеотидной последовательности (секвенирование) ДНК

Описанные методы, позволившие идентифицировать генетически важные участки ДНК, имели большое значение сами по себе. Но они также проложили путь к разработке исключительно эффективных методов секвенирования ДНК и создания рекомбинантных молекул. Секвенирование позволяет довольно быстро определить полную нуклеотидную последовательность сегмента длиной 100 - 500 нуклеотидных пар, образующегося при расщеплении ДНК рестрикционными эндонуклеазами.

Метод Маскама и Гилберта (химический)

Один из методов основан на химической деградации ДНК. Он был предложен в 1976 году Максамом и Гилбертом и назван их именем. Суть метода сводится к следующему: один из концов фрагмента ДНК метят с помощью изотопа фосфора 32Р. В последнее время вместо радиоактивной вводят флюоресцирующую метку. Ее можно «цеплять» и к нуклеотидам, причем для каждого типа нуклеотидов подбирать различную окраску. Препарат меченой ДНК делят на четыре порции и каждую из них обрабатывают реагентом, специфически разрушающим одно или два из четырех оснований, причем условия реакции подбирают таким образом, чтобы на каждую молекулу ДНК приходилось лишь несколько повреждений.

Разрушение идет в 2 этапа. На первом этапе происходит модификация азотистого основания и последующее выщепление его. На втором этапе производят гидролиз ДНК в местах выщепления оснований. Пуриновые основания модифицируются диметилсульфатом. Адениновые остатки метилируются по третьему атому азота, гуаниновые – по положению N7. Если такую модификацию обработать 0,1 М HCl при 0оС, то выщепляется метиладенин. При последующей инкубации в щелочной среде (0,1 М NaOH) при температуре +90оС происходит разрушение сахаро-фосфатной связи в местах выщепления оснований. Обработка поврежденных молекул пиперидином приводит к гидролизу ДНК по остаткам метилгуанина. Пиримидиновые основания модифицируются гидразином. В бессолевой среде модифицируется и цитозин, и тимин, в присутствии 2 М NaCl модифицируется только цитозин. При дальнейшей обработке пиперидином происходит расщепление ДНК по точкам модификации. Можно использовать и другие реакции химической модификации оснований и расщепления по ним молекул ДНК. В результате получается набор меченых фрагментов, длины которых определяются расстоянием от разрушенного основания до конца молекулы. Фрагменты, образовавшиеся во всех четырех реакциях, подвергают электрофорезу в четырех соседних дорожках; затем проводят радиоавтографию, и те фрагменты, которые содержат радиоактивную метку, оставляют "отпечатки" на рентгеновской пленке. По положению отпечатков можно определить, на каком расстоянии от меченого конца находилось разрушенное основание, а зная это основание - его положение. Так набор полос на рентгеновской пленке определяет нуклеотидную последовательность ДНК. Аналогично наблюдают флюоресцентное окрашивание. Если для каждого из четырех нуклеотидов был подобран свой цвет флюоресцентной метки, то при электрофорезе их наносят на 1 дорожку. Тогда расположение нуклеотидов отмечено штрихами разного цвета, а процедуру считывания легко автоматизировать.

Метод Сэнгера (ферментативный)

Другой метод, разработанный Сэнгером и носящий его имя, основан не на химическом, а на ферментативном подходе. Cэнгер использовал ДНК-полимеразу I. В клетке этот фермент участвует в процессе репликации, заполняя пробелы между вновь синтезированными фрагментами ДНК (фрагментами Оказаки). Для работы фермента в пробирке требуются предшественники ДНК - дезоксирибонуклеотидтрифосфаты (dNTP), а также одноцепочечная матрица, на которой должен быть небольшой двухцепочечный участок - затравка, с которого начинается синтез (рис. 41). Были также синтезированы модифицированные дидезоксирибонуклеотиды, в которых дезоксирибоза 3’-ОН отсутствует, для каждого из четырех оснований ДНК. ДНК-полимераза включает эти предшественники в ДНК. Однако, включившись в ДНК, модифицированное основание не может образовать фосфодиэфирную связь со следующим дезоксирибонуклеотидом. В результате рост (элонгация) данной цепи останавливается (терминируется) в том месте, где в ДНК включился дидезоксирибонуклеотид (ddNTP). Поэтому их называют терминаторами элонгации.

Реакционная смесь по Сэнгеру состоит из цепи ДНК, нуклеотидную последовательность которой надо определить, короткого фрагмента "меченой" ДНК, комплементарной концевому отрезку этой цепи (затравка), одного из четырех ddNTP и соответствующего dNTP в строго определенном соотношении (чтобы они конкурировали), а также остальных трех dNTP. Готовят четыре смеси, каждая из которых содержит один из четырех ddNTP. В каждой из пробирок образуется набор меченых фрагментов разной длины. Длина их зависит от того, в каком месте в цепь включен дефектный нуклеотид. Полученные меченые фрагменты ДНК разделяют в полиакриламидном геле (с точностью до одного нуклеотида), проводят радиоавтографию и по картине распределения фрагментов в четырех пробах устанавливают нуклеотидную последовательность ДНК (рис. 41).

Страницы: 1 2 3


Другие статьи:

Космические лучи
Радиационный фон, создаваемый космическими лучами, дает чуть меньше половины внешнего облучения, получаемого населением от естественных источников радиации. Космические лучи в основном приходят к нам из глубин Вселенной, но некоторая их ч ...

Метаболиты микроорганизмов
Токсины стафилококков. Стафилококковые интоксикации – наиболее типичные пищевые бактериальные интоксикации. "Они регистрируются практически во всех странах мира и составляют более 30% всех острых отравлений бактериальной природы с ус ...

Углеводы
У растений синтезируются в хлоропластах в процессе фотосинтеза из СО2 и НзО. У животных поступают с пищей. Биополимеры. Мономером является глюкоза. Моносахариды: глюкоза, фруктоза, рибоза, дезоксирибоза, галактоза. Дисахариды: сахароза, ...