Определение нуклеотидной последовательности (секвенирование) ДНК
Страница 2

Информация » Рекомбинантные(химерные) ДНК » Определение нуклеотидной последовательности (секвенирование) ДНК

В настоящее время определение точной нуклеотидной последовательности любого сегмента ДНК умеренной длины - вполне разрешимая задача. Уже определена последовательность нескольких сотен генов про- и эукариот. Зная последовательность гена и генетический код, легко определить аминокислотную последовательность кодируемого им белка. Раньше для определения структуры белка приходилось делать тщательный и весьма трудоемкий анализ выделенного и очищенного белка. Сейчас часто бывает проще определить структуру белка через нуклеотидную последовательность, чем с помощью прямого секвенирования. Если секвенирование белка занимает месяцы и даже годы, то ДНК удается секвенировать за несколько недель.

Определение последовательности ДНК привело также к тому, что были обнаружены области, которые не кодируют белки, но принимают участие в регуляции экспрессии генов и репликации ДНК. В 1996 году был секвенирован геном дрожжей, в 1998 г. – геном арабидопсиса, в 2000 году – геном человека, однако в данном случае речь идет только об установлении последовательности нуклеотидов, так как генетическая структура и функции отдельных участков генома еще не идентифицированы, это более сложная задача.

Сразу вслед за разработкой быстрых методов секвенирования появились столь же быстрые и простые методы синтеза сравнительно длинных олигонуклеотидов с определенной, заранее заданной последовательностью. Теперь за три-четыре дня можно синтезировать последовательность из 12 - 20 нуклеотидов. Автоматизация этой процедуры еще более облегчает и ускоряет синтез. Появились приборы - ДНК-синтезаторы, которые выполняют эту работу за несколько часов.

Гибридизация как высокочувствительный метод выявления специфических последовательностей нуклеотидов

Если водный раствор ДНК нагреть до 100оС и повысить рН до 13, то ДНК диссоциирует на 2 цепи (денатурирует), так как комплементарные связи между основаниями разрушаются. В 1961 году было обнаружено, что этот процесс обратим: выдерживание ДНК при температуре 65оС вело к восстановлению структуры двойной спирали. Этот процесс называется ренатурация или гибридизация. Процессы гибридизации происходят между любыми одинарными цепями, если они комплементарны: ДНК - ДНК, РНК - РНК, ДНК - РНК.

Для теста необходимо иметь чистый одноцепочечный фрагмент ДНК, комплементарный той последовательности, которую хотим обнаружить. Этот фрагмент получают либо клонированием, либо путем химического синтеза. Одноцепочечная ДНК, используемая в качестве индикатора, называется ДНК-зонд. Она может содержать от 15 до 1000 нуклеотидов.

ДНК-зонды применяются в различных целях. Гибридизация ДНК-зонда с РНК, выделенной из анализируемой клетки, может выявить наличие или отсутствие экспрессии гена. Если гибридизации не происходит, значит ген молчит, не работает. ДНК-зонды также позволяют проводить диагностику наследственных болезней.

В большинстве случаев мутации, ведущие к наследственным болезням, рецессивны, то есть болезнь развивается, если человек получает дефектные гены от обоих родителей. Аномальные эмбрионы лучше выявлять до рождения. Например, для серповидноклеточной анемии в мутантном гене, кодирующем бэта-цепь гемоглобина, последовательность ГАГ заменена на ГТГ. В этом случае синтезируют олигонуклеотид длиной около 20 оснований, метят радиоактивной меткой. Из эмбриональных клеток, содержащихся в амниотической жидкости, выделяют ДНК и используют ее для гибридизации. Если эмбрион дефектен, то тест будет положительным.

Анализ проводят по следующей схеме (рис. 42): исследуемую ДНК гидролизуют рестриктазами, фракционируют электрофорезом, переносят разделенные фрагменты на нитроцеллюлозный фильтр и проводят реакцию гибридизации с мечеными олигонуклеотидами. Этот метод был разработан Саузерном в 1975 году. В отечественной литературе его принято называть «южный блоттинг». «Блоттинг» - в переводе с английского означает «промокашка», «саузерн» - «южный», в данном случае игра слов: фамилия ученого переводится как географическое направление.

Молекулы ДНК разгоняют в агарозном геле электрофорезом. ДНК в геле денатурируют щелочью. Щелочь нейтрализуют и пластину геля покрывают листом нитроцеллюлозы. Сверху на нитроцеллюлозу помещают стопку листов фильтровальной бумаги, обеспечивая медленный ток буферного раствора через гель в направлении, перпендикулярном направлению электрофореза. ДНК диффундирует из геля и связывается с нитроцеллюлозным фильтром. После прогревания фильтра при 80оС в вакууме ДНК необратимо связывается с нитроцеллюлозой. Расположение полос иммобилизованной ДНК точно соответствует их расположению в геле.

ДНК, связанную с нитроцеллюлозным фильтром, можно гибридизовать с радиоактивно меченой ДНК. Блоттинг по Саузерну является исключительно полезным также и для локализации изучаемых генов в определенных фрагментах, полученных в результате гидролиза различными рестриктазами гибридных молекул ДНК, хромосомной ДНК и т. д.

Страницы: 1 2 3


Другие статьи:

TNF-a
Фактор стволовых клеток ...

Карповидные
Одно из самых многочисленных семейств, к которому принадлежат более половины видов рыб. Они характеризуются наличием глоточных зубов, отсутствием усиков (или не более двух пар), тело покрыто чешуей, редко голое. Плавники состоят из ветви ...

Экологические группы жужелиц по биотопическому преферендуму
Кроме основополагающей работы Шаровой (1982) мы использовали работы и других авторов (Касандрова, 1971; Попова, 1985; Шишова, 1994; Булохова, 1995; Романкина, 1996; Касандрова, Попова, Романкина, 2007). Комплекс жужелиц опытного сада вкл ...