Электрическое хозяйство инфузории
Страница 2

Информация » Работа электрических органов рыб » Электрическое хозяйство инфузории

Таким образом, сократительная вакуоль совершает очень большую работу; значительную часть своей энергии туфелька тратит на борьбу с осмосом.

А теперь рассмотрим некоторые электрические явления у инфузории и их связь с ее жизнедеятельностью и поведением. У туфельки существует ГШ; показано, что, как и у других клеток, этот ПП обеспечивается ионами калия. Однако при регистрации этого потенциала оказалось, что он очень неустойчив, У инфузории МП раз в 20 секунд делает очень большой выброс, да и в промежутках сильно колеблется. Оказалось, что эти колебания связаны с разнообразными проявлениями жизнедеятельности туфельки. Когда сократительная вакуоль выбрасывает году и раздувает выводящий канал, она сильно сообщается с наружной средой. Сопротивление мембраны вакуоли ш же, чем других участков тела инфузории, и потенциал на ней тоже ниже, поэтому в момент выброса воды эта вакуоль «закорачивает» остальную мембрану и ПП заметно снижается. То же самое происходит при разрыве пищеварительной вакуоли, когда она сливается с наружной мембраной, а у многих инфузорий – и при открывании рта. Кроме того, у инфузорий имеются разнообразные «органы чувств», которые тоже все время меняют их МП.

В протоплазме инфузорий гораздо больше калия и гораздо меньше натрия, чем в окружающей воде. Это значит, что туфелька имеет где-то в своем хозяйстве Ка – К-насос. Оказалось что концентрация Ка+ в жидкости, выбрасываемой из выделительной вакуоли, выше, чем в цитоплазме. Это показывает, что по крайней мере часть молекул N8 – К-насоса размещена на мембране выделительной вакуоли. Значит, выделительная вакуоль регулирует не только содержание воды в инфузории, но и содержание Ш+. Таким образом, вакуоль гораздо больше похожа на почки высших организмов, чем думали раньше.

Посмотрим теперь, как Ка+ попадает внутрь клетки. Во-первых, он заглатывается вместе с пищей и попадает в пищеварительные вакуоли. В вакуоли поступают пищеварительные ферменты и идет переваривание пищи; в некоторый момент путешествия вакуоли там создается кислая среда, как в желудке человека, а потом среда в ней становится щелочной и таким образом «путешествующий желудок» превращается в «двенадцатиперстную кишку». У человека пища подвергается разным воздействиям в разных точках пищеварительного тракта, а у инфузорий – в разные моменты времени в одном и том же мембранном пузырьке. Но, несмотря на эти различия, результат один: пища в вакуоли расщепляется до аминокислот и других мелких молекул. В мембране вакуолей имеются разнообразные транспортные молекулы, ведь молекулы углеводов и аминокислот должны быть переправлены в цитоплазму до того* как пищеварительная вакуоль окончит свое существование и сольется с наружной мембраной. Среди этих транспортных молекул много «электрических транспортеров», которые присоединяют к себе молекулы пищевых веществ и ион Ма+, а затем выбрасывают их в цитоплазму. Мы рассказывали вам о работе таких транспортеров в параграфе «Зачем невозбудимым клеткам потенциал покоя». Разница состоит лишь в том, что там мы говорили о транспорте веществ из наружной среды в клетку, а у инфузорий этот транспорт идет из пищеварительной вакуоли. Но это различие несущественно, можно считать, что в таких вакуолях находится кусочек проглоченной внешней среды. Вот таким образом вместе с молекулами сахара и аминокислот ионы + и попадают в протоплазму. А дальше к ним вполне можно применить выражение: «Натрий сделал свое дело, натрий может уходить». Только уходят они не сами, а выкачиваются натриевым насосом в выделительную вакуоль.

Страницы: 1 2 3 4


Другие статьи:

Технические средства эксперимента
Естественнонаучное экспериментальное исследование немыслимо без создания разнообразных технических средств, включающих многочисленные приборы, инструменты и экспериментальны установки. Без экспериментальной установки. Без экспериментально ...

Три примера структурных исследований мембранных белков
Рассмотрим три примера изучения интегральных мембранных белков, иллюстрирующие большое разнообразие используемых для этого методов. Наиболее известными структурами являются реакционные центры R. viridis и R. sphaeroides, исследование кото ...

Биохемилюминесценция как метод оценки состояния свободнорадикальных процессов при ишемическом инсульте головного мозга
Одним из методов оценки свободнорадикальных процессов при ишемии головного мозга является хемилюминесценция. Хемилюминесценцией (ХЛМ) называется свечение, сопровождающее химические реакции. Она наблюдается в том случае, если в реакции про ...